535 research outputs found

    Cultural Tourism, Religion and Religious Heritage in Castile and León, Spain

    Get PDF
    Tourism is a driving force of the economy for many countries around the world. The large number of architectural and intangible World Heritage Sites have consolidated those countries in their strong positions as cultural tourism destinations. Within cultural tourism, religious tourism is particularly prominent. This work focuses on Spain and specifically on some of its regions which lack beaches but possess a wealth of religious cultural heritage, such as Castile and León, which have viewed such heritage as an asset to attract a different kind of tourist. The objectives of this study are to highlight the value of religious heritage as a tourist attraction, analyse the potential of religious heritage for religious and non-religious tourism, and observe religious tourism as an asset in depressed areas. The criterion that governs the study is to determine the profile of these tourists and their relationship with the destination. Methodologically, this work is an analysis, assessment and reflection of different processes, practices and events from a social anthropology perspective. The results identify a type of tourist more aware of sustainability and more respectful of the environment and culture, and therefore, more in tune with religion and religious heritage

    La presión sociocultural percibida sobre el autoconcepto físico : naturaleza, medida y variabilidad

    Get PDF
    334 p.El principal propósito de esta tesis es precisar en cuántas y cuáles categorías se agrupan los distintos influjos socioculturales percibidos sobre el autoconcepto físico

    Estructura multidimensional del autoconcepto físico

    Get PDF

    Estructura multidimensional del autoconcepto físico

    Get PDF

    Homotopy continuation for vector space interference alignment in MIMO X networks

    Get PDF
    In this paper we propose an algorithm to design interference alignment (IA) precoding and decoding matrices for MIMO X networks (XN). The proposed algorithm is rooted in the homotopy continuation techniques commonly used to solve systems of nonlinear equations. Homotopy methods find the solution of a target system by smoothly deforming the known solutions of a start system which can be trivially solved. The key observation leading to a simple start system is realizing that the inverse IA problem, i.e., finding the channels that satisfy the IA conditions given a set of precoders and decoders, is linear and, therefore, a convenient trivial system. Once the start system has been solved, standard prediction and correction techniques are applied to track the solution all the way to the target system. Our results show that the proposed algorithm is able to consistently find solutions achieving the maximum number of degrees of freedom (DoF) whereas alternating minimization techniques, which typically work well for the interference channel (IC), repeatedly fail for the XN. Further, the algorithm provides insights into the feasibility of alignment in MIMO X networks for which theoretical results are scarce.This work was supported by the Spanish Government, Ministerio de Ciencia e Innovación (MICINN), under project COSIMA (TEC2010-19545-C04-03), project COMONSENS (CSD2008-00010, CONSOLIDER-INGENIO 2010 Program) and FPU grant AP2009-1105

    Non-standard and constitutive boundary conditions in nonlocal strain gradient elasticity

    Get PDF
    Zaera et al. (Int J Eng Sci 138:65-81, 2019) recently showed that the nonlocal strain gradient theory (NSGT) is not consistent when it is applied to finite solids, since all boundary conditions associated to the corresponding problems cannot be simultaneously satisfied. Given the large number of works using the NSGT being currently published in the field of generalized continuum mechanics, it is pertinent to evince the shortcomings of the application of this theory. Some authors solved the problem omitting the constitutive boundary conditions. In the current paper we show that, in this case, the equilibrium fields are not compatible with the constitutive equation of the material. Other authors solved it omitting the non-standard boundary conditions. Here we show that, in this case, the solution does not fulfil conservation of energy. In conclusion, the inconsistency of the NSGT is corroborated, and its application must be prevented in the analysis of the mechanical behaviour of nanostructures.The authors are indebted to the Ministerio de Ciencia e Innovación de España (Projects DPI-2014-57989-P, PGC2018-098218-B-I00, and BES-2015-073720) for the financial support

    Homotopy continuation for spatial interference alignment in arbitrary MIMO X networks

    Get PDF
    In this paper, we propose an algorithm to design interference alignment (IA) precoding and decoding matrices for arbitrary MIMO X networks. The proposed algorithm is rooted in the homotopy continuation techniques commonly used to solve systems of nonlinear equations. Homotopy methods find the solution of a target system by smoothly deforming the solution of a start system which can be trivially solved. Unlike previously proposed IA algorithms, the homotopy continuation technique allows us to solve the IA problem for both unstructured (i.e., generic) and structured channels such as those that arise when time or frequency symbol extensions are jointly employed with the spatial dimension. To this end, we consider an extended system of bilinear equations that include the standard alignment equations to cancel the interference, and a new set of bilinear equations that preserve the desired dimensionality of the signal spaces at the intended receivers. We propose a simple method to obtain the start system by randomly choosing a set of precoders and decoders, and then finding a set of channels satisfying the system equations, which is a linear problem. Once the start system is available, standard prediction and correction techniques are applied to track the solution all the way to the target system. We analyze the convergence of the proposed algorithm and prove that, for many feasible systems and a sufficiently small continuation parameter, the algorithm converges with probability one to a perfect IA solution. The simulation results show that the proposed algorithm is able to consistently find solutions achieving the maximum number of degrees of freedom in a variety of MIMO X networks with or without symbol extensions. Further, the algorithm provides insights into the feasibility of IA in MIMO X networks for which theoretical results are scarce.This work has been supported by the Ministerio de Economía y Competitividad (MINECO) of Spain, under grants TEC2013-47141-C4-R (RACHEL), TEC2016-75067-C4-4-R (CARMEN), MTM2014-57590-P, and FPI grant BES-2014-069786

    On the number of interference alignment solutions for the K-user MIMO channel with constant coefficients

    Get PDF
    In this paper, we study the number of different interference alignment (IA) solutions in a K-user multiple-input multiple-output (MIMO) interference channel, when the alignment is performed via beamforming and no symbol extensions are allowed. We focus on the case where the number of IA equations matches the number of variables. In this situation, the number of IA solutions is finite and constant for any channel realization out of a zero-measure set and, as we prove in this paper, it is given by an integral formula that can be numerically approximated using Monte Carlo integration methods. More precisely, the number of alignment solutions is the scaled average of the determinant of a certain Hermitian matrix related to the geometry of the problem. Interestingly, while the value of this determinant at an arbitrary point can be used to check the feasibility of the IA problem, its average (properly scaled) gives the number of solutions. For single-beam systems, the asymptotic growth rate of the number of solutions is analyzed and some connections with classical combinatorial problems are presented. Nonetheless, our results can be applied to arbitrary interference MIMO networks, with any number of users, antennas, and streams per user.The work of Ó. González and I. Santamaría was supported by MICINN (Spanish Ministry for Science and Innovation) under grants TEC2013-47141-C4-3-R (RACHEL), TEC2010-19545-C04-03 (COSIMA), CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS) and FPU grant AP2009-1105. Carlos Beltrán was partially supported by MICINN grant MTM2010-16051

    On the Mechanism of Bandgap Formation in Beams With Periodic Arrangement of Beam-Like Resonators

    Get PDF
    Metastructures made of spring-mass resonators present a bandgap at the natural frequency of the resonator. This rule cannot be generalized for more complex resonators. This work analyzes the case of a metastructure composed of a periodic arrangement of vertical beams rigidly joined to a horizontal beam. The vertical beams work as resonators, and their natural frequencies play a strong role on the band structure of the whole system, however, different than the case with spring-mass resonators. Since this metastructure can be considered a lattice, Bloch’s theorem is applied to the unit cell and a numerical procedure based on the finite element method permits to obtain the dispersion curves. Illustrative results show the influence of the natural frequencies of the horizontal and vertical beams on the band structure.This work was supported by the Ministerio de Economía y Competitividad de España (grant numbers DPI2014-57989-P and BES-2015-073720)Publicad

    Band structure analysis of a thin plate with periodic arrangements of slender beams

    Get PDF
    This work analyzes the wave propagation in structures composed of a periodic arrangement of vertical beams rigidly joined to a plate substrate. Three different configurations for the distribution of the beams have been analyzed: square, triangular, and hexagonal. A dimensional analysis of the problem indicates the presence of three dimensionless groups of parameters controlling the response of the system. The main features of the wave propagation have been found using numerical procedures based on the Finite Element Method, through the application of the Bloch's theorem for the corresponding primitive unit cells. Illustrative examples of the effect of the different dimensionless parameters on the dynamic behavior of the system are presented, providing information relevant for design.This work was supported by the Ministerio de Economía y Competitividad de España (grant number DPI2014-57989-P).Publicad
    corecore